top of page
  • Writer's pictureDominik

Bak is Beautiful

At NEOLD, we stock a huge amount of beautiful Bakelite knobs from several decades, most of them to be used on future projects. Actually, our collection brings a smile to my face every time I look at it, and in a moment of reflection I recently asked myself why that is. Sure, the fact that I like black as a ‘color’ is an obvious one. Also, the design language from times long gone really speaks to me.



But there had to be more to it than that… actually, I have always felt a subliminal attraction towards the material itself. But why? I really couldn’t find an answer, until mentioning this to Roger Schult on the phone recently. He surprised me with an instant and very convincing answer:


The magic of Bakelite is in its truly organic look and feel.

And this completed the picture for me. But then, two other questions which I had never thought of before popped up: What is that stuff actually made of? And, where does the name come from in the first place? WWW to the rescue:



Bakelite (/ˈbeɪkəlaɪt/ BAY-kə-lyte; sometimes spelled Baekelite) or polyoxybenzylmethylen-glycolanhydride was the first plastic made from synthetic components. It is a thermosetting phenol formaldehyde resin, formed from a condensation reaction of phenol with formaldehyde. It was developed by the Belgian-American chemist Leo Baekeland in Yonkers, New York, in 1907.


Baekeland was already wealthy due to his invention of Velox photographic paper when he began to investigate the reactions of phenol and formaldehyde in his home laboratory. Chemists had begun to recognize that many natural resins and fibers were polymers. Baekeland's initial intent was to find a replacement for shellac, a material in limited supply because it was made naturally from the excretion of lac insects (specifically Kerria lacca). Baekeland produced a soluble phenol-formaldehyde shellac called "Novolak", but it was not a market success.


Baekeland then began experimenting on strengthening wood by impregnating it with a synthetic resin, rather than coating it. By controlling the pressure and temperature applied to phenol and formaldehyde, Baekeland produced a hard-moldable material that he named "Bakelite", after himself.

It was the first synthetic thermosetting plastic produced, and Baekeland speculated on "the thousand and one ... articles" it could be used to make. Baekeland considered the possibilities of using a wide variety of filling materials, including cotton, powdered bronze, and slate dust, but was most successful with wood and asbestos fibers.



Baekeland filed a substantial number of patents in the area. Bakelite, his "method of making insoluble products of phenol and formaldehyde," was filed on July 13, 1907, and granted on December 7, 1909. Baekeland also filed for patent protection in other countries, including Belgium, Canada, Denmark, Hungary, Japan, Mexico, Russia, and Spain. He announced his invention at a meeting of the American Chemical Society on February 5, 1909.


Baekeland started semi-commercial production of his new material in his home laboratory, marketing it as a material for electrical insulators. By 1910, he was producing enough material to justify expansion. He formed the General Bakelite Company as a U.S. company to manufacture and market his new industrial material. He also made overseas connections to produce materials in other countries.


The characteristics of Bakelite made it particularly suitable as a molding compound, an adhesive or binding agent, a varnish, and a protective coating. Bakelite was particularly suitable for the emerging electrical and automobile industries because of its extraordinarily high resistance to electricity, heat, and chemical action.



The earliest commercial use of Bakelite in the electrical industry was the molding of tiny insulating bushings, made in 1908 for the Weston Electrical Instrument Corporation by Richard W. Seabury of the Boonton Rubber Company. Bakelite was soon used for non-conducting parts of telephones, radios and other electrical devices, including bases and sockets for light bulbs and electron tubes (vacuum tubes), supports for any type of electrical components, automobile distributor caps and other insulators. By 1912, it was being used to make billiard balls, since its elasticity and the sound it made were similar to ivory.


During World War I, Bakelite was used widely, particularly in electrical systems. Important projects included the Liberty Motor, the wireless telephone and radio phone, and the use of micarta-bakelite propellers in the NBS-1 bomber and the DH-4B aeroplane.


Bakelite's availability and ease and speed of molding helped to lower the costs and increase product availability so that telephones and radios became common household consumer goods. It was also very important to the developing automobile industry. It was soon found in myriad other consumer products ranging from pipe stems and buttons to saxophone mouthpieces, cameras, and appliance casings.

Bakelite was also very commonly used in making molded grip panels (stocks) on handguns, submachine guns and machineguns, as well as numerous knife handles and "scales" through the first half of the 20th century.


Beginning in the 1920s, it became a popular material for jewelry. Designer Coco Chanel included Bakelite bracelets in her costume jewelry collections. Designers such as Elsa Schiaparelli used it for jewelry and also for specially designed dress buttons. Later, Diana Vreeland, editor of Vogue, was enthusiastic about Bakelite. Bakelite was also used to make presentation boxes for Breitling watches. Jewelry designers such as Jorge Caicedo Montes De Oca still use vintage Bakelite materials to make designer jewelry.



By 1930, designer Paul T. Frankl considered Bakelite a "Materia Nova", "expressive of our own age". By the 1930s, Bakelite was used for game pieces like chessmen, poker chips, dominoes and mahjong sets. Kitchenware made with Bakelite, including canisters and tableware, was promoted for its resistance to heat and to chipping. In the mid-1930s, Northland marketed a line of skis with a black "Ebonite" base, a coating of Bakelite. By 1935, it was used in solid-body electric guitars. Performers such as Jerry Byrd loved the tone of Bakelite guitars but found them difficult to keep in tune.


During World War II, Bakelite was used in a variety of wartime equipment including pilot's goggles and field telephones. It was also used for patriotic wartime jewelry. In 1943, the thermosetting phenolic resin was even considered for the manufacture of coins, due to a shortage of traditional material. Bakelite and other non-metal materials were tested for usage for the one cent coin in the US before the Mint settled on zinc-coated steel.


In 1947, Dutch art forger Han van Meegeren was convicted of forgery, after chemist and curator Paul B. Coremans proved that a purported Vermeer contained Bakelite, which van Meegeren had used as a paint hardener.

Bakelite was sometimes used as a substitute for metal in the magazine, pistol grip, fore grip, hand guard, and butt stock of firearms. The AKM and some early AK-74 rifles are frequently mistakenly identified as using Bakelite, but most were made with AG-S4.


By the late 1940s, newer materials were superseding Bakelite in many areas. Phenolics are less frequently used in general consumer products today due to their cost and complexity of production and their brittle nature. They still appear in some applications where their specific properties are required, such as small precision-shaped components, molded disc brake cylinders, saucepan handles, electrical plugs, switches and parts for electrical irons, as well as in the area of inexpensive board and tabletop games produced in China, Hong Kong and India. Items such as billiard balls, dominoes and pieces for board games such as chess, checkers, and backgammon are constructed of Bakelite for its look, durability, fine polish, weight, and sound.



Common dice are sometimes made of Bakelite for weight and sound, but the majority are made of a thermoplastic polymer such as acrylonitrile butadiene styrene (ABS). Bakelite continues to be used for wire insulation, brake pads and related automotive components, and industrial electrical-related applications. Bakelite stock is still manufactured and produced in sheet, rod and tube form for industrial applications in the electronics, power generation and aerospace industries, and under a variety of commercial brand names.


This article – with the exception of its introduction – has been quoted from Wikipedia under the Creative Commons Attribution-ShareAlike License.

521 views
bottom of page